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SUMMARY 

The irrotational motions induced by, but outside of, the self- 
preserving turbulent wake and jet are examined. It is found that 
there is a mean flow towards the centre of the jet, although there is 
no such flow in the case of the wake. Phillips's (1955) results on 
the nature of fluctuating irrotational flows are found to be largely 
unaffected by the introduction of simple inhomogeneities into the 
boundary conditions, but another mode of fluctuation with move- 
ment along the lines of mean flow is also shown to be likely. It is 
pointed out that, contrary tb a statement of Corrsin & Kistler 
(1954), it is possible for the vorticity-free fluid between bulges of 
turbulent fluid to partake of the mean velocity of the turbulent 
fluid. 

1. INTRODUCTION 
Experimental researches in recent years have established beyond doubt 

that in all those flows, such as wakes, jets and boundary layers, where 
turbulence is expanding into non-turbulent regions of fluid, there exists a 
relatively sharp, although violently contorted, boundary separating the 
fully turbulent region and an external region. This external region, 
although not stationary, is characterized by very much smaller velocity 
gradients than is the turbulent region. Corrsin & Kistler (1954) and 
Townsend (1956) have pointed out that since vorticity can be introduced 
into non-vortical fluid only by viscosity, which is a very short range force, 
the motion in this external region is probably irrotational, and therefore 
can be derived from a scalar potential. 

Phillips (1955) has considered a simple case of such irrotational motion, 
taking boundary conditions such that the velocity component u2 is a 
stationary random function of the Cartesian coordinates xl, and x, on the 
plane x2 = 0" and that the velocity u vanishes as x2 -+ co. It is the purpose 
of this paper to extend Phillips's results to some situations in which the 
statistical properties of u2 are not independent of both x1 and x,, and to 
offer some comments and speculations on the phenomena. 

to conform to customary usage in wakes and jets. 
flow and xQ is parallel to any direction of symmetry. 

* We have changed the order of the indices from that used by Phillips in order 
x1 is the principal direction of 

F.M. 2 R  
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We begin with a review of Phillips's analysis. Given that 

(u,),~ = ,, = eik-x dA(k), I 
where k is a (two-dimensional) vector wave-number with components 
(k,, 0, k,) and magnitude k,  x is the position vector with components 
(xl, x2, x,) and the integration is over all k-space (two-dimensional) ; and 
defining 

d A  (k) d A  *( k) 
8(k) = lim 

dk+O dkldk3 ' 
where the bar indicates an average over the plane x2 = 0 and the asterisk 
denotes the complex conjugate ; he finds that, for all x2 > 0, 

2 = O(k)e--2"a dk, 

u: = [ $ 0(k)e-2k"zdk 
- 

(z' = 1, 3). 

I t  is shown that, since 8(k) is an even function, 
- - 
u1 u2 = I !!? O(k)e-2kzg dk = 0 = u2 u,. 

k 
He also states that u7, = 0, and indicates that a similar proof would 

This is not the most general case, however, for in establish this relation. 
fact 

which is not generally zero. Since u z  is a symmetric tensor there will 
always, of course, be a possible choice of the x1 and x,-coordinate directions 
for which u,U3 = 0. In  the ordinary cases of the two-dimensional wake, 
jet or boundary layer, this choice corresponds to the ' natural ' one of x1 as 
the downstream direction. For the wake of a yawed cylinder or the boundary 
layer over a plate whose leading edge is not perpendicular to the flow, 
however, FQ # 0 if the x,-direction is chosen to be the principal direction 
of flow. There is no need to exclude such examples, and we may continue 
the analysis in the manner of Phillips. 

Assuming that 0(k) may be expanded near k = 0 in the form 

8(k) = 0 + ki 0, + ki ki Oii + ki ki kl Oii, + . . . , 
where 8, Oi, Oij, etc. are Cartesian tensors of the indicated order and are 
independent of the ki, Phillips shows that 0 = Oi = 0. At large values 
of x2 the values of 8(k) contributing significantly to the integrals in equations 
(1.1) to (1.3) are given approximately by 

0(k) - ki k,  Bi3 . (1.4) 
Putting (1.4) in (1.3) we get 

" li3 k . k .  1 3  8. z j  e-2k.5, dk 

= 1 '+ zk2 (el, + 8,,)e-2kZ*dk 
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There since terms in ell and 033 evidently vanish for reasons of symmetry. 
is no loss of generality if we take Oii to be symmetric, so 

= %571.e13x;4. (1.6) 
We also write down for reference relations derived by Phillips: 

- 

(1.7) I u; - +(ell + e3,)x;4, 

u: - $+el, + e33)x24, 

u; - ;3571.(e11 + 3e3,1x;4. 

- 

- 

Thus we see that in general there is a Reynolds shear stress due to the 
irrotational motion, with its direction parallel to the plane x2 = 0. 

It is evident from (1.1) that 
- - -  
24; = u;+u;, (1.8) 

so that the velocity fluctuations are not isotropic. This is of some conse- 
quence, for in the following sections we shall consider situations where u2 
is not statistically stationary on the plane x2 = 0, and it can be shown that 
this lack of istropy then gives rise to stress gradients. Thus, in the absence 
of viscosity the total Cartesian stress tensor in an incompressible fluid is - 

TZi = pa,* + u, ui (1.9) 
where P is the pressure, is the Kronecker delta, and ux is the Reynolds 
stress. If the fluctuating velocities are distributed isotropically, this 
becomes 

and it is possible for gradients in 2 to be compensated by gradients in P, 
so that no net stress gradients (or accelerations) need result. In the absence 
of istropy this compensation becomes impossible and variations in turbulent 
intensity are necessarily accompanied by stress gradients. 

In  addition, Corrsin & Kistler (1954) have shown that in the special 
case of irrotational flow the relation 

- 
T$j = ( P +  ."a,, (1.10) 

(1.11) 

imposes conditions on the Reynolds stresses which have some interesting 
implications. For example, expression (1.8) can be derived very simply 
from the boundary conditions and the relation (1.11). Thus the Reynolds 
stress gradients must satisfy the relations - -  

a -  au2 au, - 1 a - - u  u = u.- = u axi 2 i 3 axj I z2 - 2 ~ 2 U ~ U i .  

But the fluctuations are stationary in the xl- and x,-directions. Hence 

2 R 2  
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and so 

Then, since u vanishes as x2 -+ co, 
- - - -  u; = + u p ,  = u1 2 2  + u3. 

2. CYLINDER WAKE 

The predictions of Phillips’s theory have been remarkably confirmed by 
comparison with measurements, made by A. A. Townsend in the wake of a 
circular cylinder. It is probably worth examining the potential flow 
associated with such a wake in more detail. 

We shall consider only a self-preserving flow which Townsend (1956) 
has shown to be possible only if the turbulent velocities are small compared 
with the mean flow velocity U,. In  this case the characteristic scale L 
varies as x;j2 when the x,-direction is the principal direction of flow and 
the origin of x1 is some virtual origin not too far from the actual location of 
the cylinder. It is also shown that, for the transport of momentum to be 
independent of x,, U, cc xr1l2, where U, is some characteristic velocity 
which may be taken as U, = U,  - ( UJrnin for any given x,. Root-mean- 
square turbulent velocities vary as U,. 

- U r n  

Figure 1. The self-preserving wake. 
The scale in the x,-direction is greatly expanded. 

In  figure 1 the total mean transport of fluid across the section AA per 
unit length in the x3-direction is 

aL( U,  - KU,) -t- a d L  U,, 
where KU, is the average value of U ,  - U, across the wake, the total extent 
of which is a L ,  and K and a are constant. The total mean transport of 
fluid across the section BB is 

a ( L  + dL){ U,  - K( UO + duo)}. 



Irrotational motion associated with free turbulent flows 597 

Neglecting second order differentials, the transport across AB in the 
x2-direction is therefore 

+aK(L dUo + U, d L )  = + a K d (  U, L). 
Hence d 

dx1 
u, K - ( U 0 L )  = 0. 

Thus we find that there is no mean flow from the x2-direction into a self- 
preserving two dimensional wake. We shall see later that this is not true 
of a jet. 

3. FLUCTUATING MOTIONS OUTSIDE A TURBULENT WAKE 

Returning to the case considered by Phillips, let us assume that it is 
possible to define O(k, xl) for every value of x1 on some plane* xg = 0 
outside, but close to, the main body of the wake. We assume that, although 
8(k, xl) is inhomogeneous in xl, Phillips’ main conclusions are not materially 
altered. 

Our similarity conditions require that 

O(k, x1) = X(kxll’2) = X(4, (3.1) 
where x is a function of E = kx:l2 only, in order that the characteristic 
scales shouldvary as xi”, and that the energy per unit mass in the fluctuations, 

1 O(k, xl) d k  = xcl 1 X(E) d q  

should vary as xcl.  

may then be written 

where xzj, etc. are absolute constants for the particular flow. 

ug - 8 ’ d X i i  
u? - ?&(3X11+ X3&1 Xg ‘ 9  

4 - & ~ ( x i i  + 3 x 3 3 ) ~ 1 ~ ~  ‘* J 

The expansion 

q k ,  

O(k, x1) = x1 K ,  kj xzj + x:: 4 kj K ,  K ,  xzjzrn + * * * 9 

= k, k j  etj(x1) + K, kj  K ,  K ,  eZjzm(X1) + . . . 

(3 4 

At sufficiently large values of x2, we find from (1.7),:(1.8) and (3.2) that 
- 

1 (3.3) 

X3&1 xz 49 - 
- 

- -  
By symmetry ~ 1 ~ 3  = ~ 2 ~ 3  = 0. 
It is interesting to note that these fluctuation intensities increase as x1 
increases. The reason for this, of course, is that the increase in the scale 
of the primary causative turbulence more than compensates for the decrease 
in intensity. If we consider the variation on similarity surfaces x2 cc x:/~, 
instead of on planes x2 = constant, we find that the fluctuation intensities 
are all proportional to x<l, as they should be. 

The  equations for incompressible mean flow in the steady state are 

* The actual surface should be parabolic, but this introduces considerable 
complication into the analysis and at large values of xi the difference should be slight. 
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If we have Reynolds number similarity (Townsend 1956) which we shall 
I n  the particular region of the assume, the viscous term will be negligible. 

flow in which we are interested we have seen that 
- -  u, - u3 = u1u3 = uzu3 = 0, 

and we shall see later (3.9) that ( 8 / i l x l ) s  = 0;  so it would appear reason- 
able to write for the x,-component 

- - + 2 = 0  1 ap a2 
P 8x2 3x2 

or P+puZ = Pa, (3.5) 
- 

P, being the value of P at large values of xz, where 2 is very small. 
For the x,-component, the ony terms of any consequence will be 

au, au, l a p  a - a 2  - + u - + - - + - 2.41 u,+ -2 = 0. (3.6) uz ax, 1 ax, P a x ,  ax, 8x1 
Corrsin & Kistler (1954) have shown that, for irrotational flow 

__ 

(3.7) 
auiui 1 a42 

a x j  z axi7 
-= - -  
- 

where 4 2  = ujuj,  
If mean quantities are independent of x3, (3.7) gives 

- - -  
In  our case, where u$ = uF+ut = *q2, this yields 

a u , z c 2  - - 0, 
ax, 

and introducing (3.5) into (3.10) we obtain 

Combining (3.6) and (3.11) we find that 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

We therefore see that the mean flow is unaffected by the irrotational 
fluctuations, not because the Reynolds stresses are zero, but because the 
gradient of the shear stress (i3/Zxz)uT, exactly balanced by the gradient 
of the total normal stress (d/ax,)(P/p + u:). It would appear that such a 
balance is the rule rather than the exception in irrotational fluctuating 
flows. 
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The  normal stress gradient tends to accelerate fluid in the direction of 
the mean flow. However, the shear stress transfers this acceleration to the 
retarded flow in the main body of the wake. The  whole process must be 
considered as a part of the mechanism by which this retarded fluid is 
accelerated towards U ,  as the wake decays. 

4. MOTION BETWEEN BULGES OF TURBULENT FLUID 

There is a difference of opinion expressed in the literature as to the nature 
of the mean flow in that portion of the external, irrotational flow region 
which lies between out-thrusts or bulges of the turbulent fluid. Townsend 
(1949) states that " the non-turbulent fluid between successive jets is 
constrained by pressure gradients to move at the same mean velocity as the 
fluid in the adjacent jets ", and shows measurements (Townsend 1956, 
p. 163) to support this view. Corrsin & Kistler (1954), arguing that the 
mean flow in these regions is irrotational and therefore gradient free, say 
" the mean velocity everywhere in the potential field must be constant and 
equal to that at infinity " and publish measurements qualitatively sub- 
stantiating this statement. 

An examination of Phillips's results may cast some light on this contro- 
versy. It is noteworthy that equations (1.1) exactly correspond to the 
classical theory of flow in gravity water waves (Lamb 1932, ch. 9) if we consider 
a situation where there is a continuous spectrum of wave frequencies and 
waves may be oriented in all possible directions. Now it is well known 
(Lamb 1932, p.418) that, although such waves are purely irrotational 
flows, if they have finite amplitude they are accompanied by a mean transport 
of fluid, and a resulting mean shear. The  reason for this apparent contra- 
diction is that they are bounded by a non-planar surface, and any plane 
passing between the level of maximum elevation and the level of maximum 
depression includes regions in which the equations of irrotational flow do 
not apply. T h e  simple case of a single wave train with a single frequency 
is sketched in figure 2 (a) ,  which clearly illustrates the phenomenon. Every- 
where below the boundary the flow is irrotational. The  velocity potential is 

4 = -Bcoskxle-kxz, ( 4 4  
where B is a constant, and the velocity components are 

u1 = Bk sin kx, e- k x z ,  

u2 = Bk cos kx, eckx2. 
For any x2 > 0, 

sinkx,e-kxzdx, = 0, 

but, if the boundary" is described by 

x2 = - h( 1 + sin kx,), (4.3) 
* The fact that the actual boundary of a theoretical water wave is trochoidal does 

not concern us here. 
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for 0 > x2 > -2h, we find that, 
- Bke- kxs  
u1 = 

(sin-'(-l-z$h)}/k 

q c k  
sin kx, dx, I cos-l( - 1 - x,/h) 

B e - k Z a  
- - cos-1( - 1 - xz/h) J(% - Z).  (4.4) 

This function is plotted in figure 2 (b) for B = k = h = 1. 

$$ =-B cos(kx,)ekx2 

(a)  (6) 
Figure 2. ( a )  Flow in a simple gravity wave advancing from left to right. The 

length of the arrows is proportional to the logarithm of the velocity at their 
centres ; (6) the mean horizontal velocity within the wave. 

X, 

-u<uco 
Figure 3. Probable directions of potential flow near the boundary of 

turbulent fluid in a wake. 

The irrotational flow induced by free turbulence is another example of 
potential flow with an irregular boundary beyond which Laplace's equation 
does not hold. It is quite probable that a similar phenomenon occurs, for 
the pressure forces are likely to make the mean direction of the potential 
flow between bulges the same as that of the bulges themselves. The 
example of gravity waves shows that such a motion is not inconsistent with 
the equations of irrotational flow. If the flow is of this type, we can make 
some predictions concerning the direction of u2 in the non-turbulent region 
(figure 3). In  a wake this component should consistently be negative 
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just before the arrival of a bulge and positive just after its passage. Perhaps 
the similarity in appearance between the boundary of the turbulent fluid 
and the surface of a tumultuous sea is more than merely superficial. 

5. JETS 

I n  considering the two-dimensional wake we passed rather lightly over 
the fact that our similarity surfaces were not planes x2 = constant but were 
parabolic. This was justified at sufficiently large values of xl, since these 
surfaces there approach closely to such planes. For jets, however, such 
an assumption becomes very questionable. It is found (Corrsin & Kistler 
1954) that in jets characteristic scales vary as xl, and characteristic velocities 
vary as x ~ l  for circular jets and as ~ 1 ' ' ~  for two-dimensional jets. In these 
flows it is obviously not possible to choose suitably a unique direction for 
x2 in Cartesian coordinates in order to apply Phillips's theory. The  appro- 
priate coordinate system will be spherical for the circular jet and cylindrical 
for the two-dimensional jet. 

For the circular jet we have boundary conditions defined on a cone, 
with vertex at a virtual origin close to the source of the jet and angle such 
that it just contains all the turbulent fluid [about 25" included angle 
according to experimental results). I n  spherical coordinates (Y, a, p) this 
cone is defined by a = a,,, and following Phillips's general line of argument we 
define a potential $(r,  u, /3) such that u, = (l/r)(?+/aa) is a statistically 
prescribed function of r and /3 on a = ao. (u,),=,, will be characterized 
by a typical scale which varies as Y and a typical magnitude which varies as 
r-1. Such a function can be accurately and conveniently described by 

where k, and kp are dimensionless wave-numbers, the summation is over 
kg which takes only integral values, and A is complex. The  potential 
function everywhere outside the cone will then be 

+ = 1 ~ ( k , ,  kg)r+exp(ihpi5)+(u, k,, kg> dk, (5.2) 
where + will be expressible in terms of Associated Legendre Functions of 
integral order kg, pure imaginary degree ik,, and real argument cosu. 
T h e  function $I may be analytically different for the various combinations of 
positive and negative values of k, and kg and will depend to some extent 
on other boundary conditions such as those that are imposed, for example, 
if the jet issues from a hole in an infinite wall. 

Unfortunately there appears to be no published study of such functions, 
and it hardly seems worth conducting a detailed study for the present 
application. 

6. MEAN FLOW OUTSIDE A CIRCULAR JET 

A similar argument to that used to derive (2.1) shows that the mean 
flow component U, is given by 

u, = Cr-1, (6.1) 
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where C is a negative constant on the boundary of the turbulent region 
u = uo. 

A solution of Laplace’s equation for the mean velocity potential @, 
with (6.1) as a boundary condition and symmetry in B, is 

CD = A, log(r sin ct) +A, log(tan +a), (6.2) 
A, cos a. + A, = C sin ao. 

Expression (6.2) leaves one arbitrary constant to  be determined by other 
boundary conditions. 

If the jet issues from a hole in an infinite wall at u = +T, then A, = 0 and 

which corresponds to a very simple uniform radial flow directed everywhere 
towards the axis of the jet, with speed inversely proportional to the distance 
from this axis. 

@ = C tan a. log(r sin u), (6.3) 

Figure 4. Flow lines into a self-preserving circular jet issuing from a nozzle. 

If, as in Corrsin & Kistler’s (1954) experiments, the jet issues from a 
nozzle, the boundary condition may be approximated by 

a@ 
acr - = O  at o 1 = ~  

and we have 
C sin rx,, 

@ =  log(? sin u tan 4.). 
cos Gco + 1 

I n  this case the flow lines are given by 
r(cos o1 + 1) = constant 

and are sketched in figure 4. It will be noted that, even here, when close 
to the jet, the mean flow is directed essentially perpendicular to the axis 
of the jet. 

7. TWO-DIMENSIONAL JET-MEAN FLOW 

By a ‘ two-dimensional jet ’ we refer to the type of flow produced when 
The  mean flow is two-dimensional, 

In this type of 
fluid issues from a long uniform slot. 
but fluctuating motions occur in all three dimensions. 
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flow the similarity conditions require that the scales vary as r and the 
characteristic velocities as r r j 2 .  I n  cylindrical coordinates (Y, Q, z )  this 
requires that 

on the edge of the turbulent region, Q = aO. 
a0 is positive. 

at M = in (corresponding to a slot in an infinite wall) is 

The  corresponding flow lines, which are given by 

u, = Dr-112 (7.1) 
D is a negative constant if 

The  velocity potential satisfying (7.1) and also the condition U, = 0 

Q, = Dr1’2{cos (4, + $n)}-l sin(4a + in). (7.2) 

(7.3) r1lz cos(+x + az-) = constant, 

are sketched in figure 5. 

Figure 5 .  Flow lines into a self-preserving two-dimensional 
jet issuing from an infinite wall. 

8. FLUCTUATING POTENTIAL FLOW OUTSIDE A TWO-DIMENSIONAL JET 

I have been unable to find, in three dimensions, a suitable function to 
describe the boundary condition for flow outside a two-dimensional jet. 
However, if we can imagine a flow in which the fluctuating motions are 
also two-dimensional the problem becomes rather simple, and the conclusions 
derived from a study of this hypothetical flow may, with some caution, be 

A velocity potential in polar coordinates (Y, a),  for which ut varies as 
r-1 and typical scales vary as Y, and which satisfies the boundary condition 
u, = 0, at cc = i7i (corresponding to a slot in an infinite wall), can be 
constructed thus : 

4 = rl/z A { e - k a : c ~ s ( B + k l o g r + ’ , c r ) + e - ~ ‘ ” - ~ ) ~ ~ ~ ( R + k l o g r + ~ n - ~ t c ) ) d k ,  

applied to the more complex real.flows. - 

.m 

- 0  

(8.1) 
where A and B are real functions of k. 
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For-k < 
u, = 

u, = 

Now in the region of greatest interest, n - x = 3, which is of the order 
Therefore, for k greater than about one, the 

For 
of ten times as great as a. 
second term in this integral is negligible compared with the first. 
small k, however, the two terms approach equality in magnitude. 

1, then, the velocity components reduce to 

u, and u, are therefore fully correlated, and the only motions at these very 
small wave-numbers are along streamlines given by 

r1I2 cos(fra + i n )  = constant. (8.3) 
It will be observed that (8.3) is identical with (7.3)) the expression for the 
streamlines of the mean flow into a two-dimensional jet. We have therefore 
come to the interesting, if not particularly surprising, conclusion that the 
very small wave-number fluctuations follow the same streamlines as the mean 
flow, shown in figure 5. This result is expected to be valid much more 
generally than just in this two-dimensional case, for temporal variations in 
the rate of flow from the jet will be described in just this way. It should 
be noted that although these fluctuations are characterized by very small 
wave-numbers, their frequency (in time) may be quite high. 

For k > 1, the second term in (8.1) becomes negligible, and we have 

(8.4) 

m 

0 
u, = r 1 i 2  1 Ae-”“(ccos(B+klogr+$cr)- 

u = - r-1/2 I Aeckca(+ sin(B + k log r + +a) + 

B(k) is a rapidly changing function of k satisfying the inequality 

- k sin(B + log r + +a)} dk, 
m 

0 

+ k cos(B + k logr + &a)} dk. 

- T < B < T ,  
and if we average over different flow realizations we would expect that 

sin {B(k,) & B(k,)} = cos{B(k,) & B(k,)} = 0, 
unless k, = k,. 
realizations, so 

B will take all values equally probably in different flow 

(8.5) I - -  m 
.$ = uE = Jr-1 I A”$ +k2)e-2”&, 

0 u,u, = 0. 

Thus 2 = and u, and u, are uncorrelated, and (8.5) is obviously the 
two-dimensional analogue in polar coordinates of Phillips’s results (1.1) 
and (1.2). 

The  scale of a motion characterized by k = 1 will be such that logr 
changes by about Thus that is r changes by a factor of the order of 5 .  
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k =I1 is a very small wave-number indeed, and virtually all the energy of 
the velocity fluctuations may be in the range of wave-numbers for which 
(8.5) is applicable. 

Although a detailed analysis of the actual case of three-dimensional 
fluctuations in the two-dimensional jet has not been found possible, some of 
its probable characteristics can be shown. 

It  can readily be demonstrated that for irrotational flow in which mean 
quantities are invariant in the x-direction the cylindrical coordinate equi- 
valents to  equations (3.8) are 

Our similarity conditions permit us to write 

q 2  = r-p2, u: = r-lvi, (8.7) 
where p and G. are independent of r .  Equations (8.6) then become 

In  view of (1.8) and (8 .5 ) )  the most likely solution to these equations is 
- - 
v," = Q p 2 ,  v,v, = 0. (8.9) 

It would seem probable then that there is no Reynolds shear stress 
across surfaces a = constant in the two-dimensional jet. This is a result of 
the behaviour q2 cc r-l and would not be possible with any other dependence 
on r ,  unless u, = 0. It is in contrast to the situation in the wake, where 
we saw that a shear stress does occur. 

9. CONCLUDING NOTE 

This study, as far as it has gone, has shown that the results of Phillips's 
simple model of irrotational flow outside a turbulent region are not greatly 
affected by introducing simple inhomogeneities into the boundary conditions. 
It has been demonstrated that these irrotational fluctuations are capable in 
some circumstances of producing a Reynolds shear stress, but the basic 
conclusion that the velocity component directed away from the boundary of 
the turbulence contains about half the total energy in the fluctuations seems 
to be firmly established. Still unresolved then, is the contradiction pointed 
out by Townsend (1956, p. 191) between this kind of theory andthe experi- 
mental results which indicate that in jets the downstream component is 
larger than this cross-stream component. Although it is not altogether 
satisfactory to rely on the extensibility of the results of the two-dimensional 
analysis of 5 8 to real three-dimensional cases, flow similar to that described by 
(8.2) is intuitively likely and (8.5) is very similar to the three-dimensional 
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result (1.1). It seems reasonable to infer that in three-dimensional cases 
there will also be two basic modes to the irrotational fluctuations : very low 
wave-number motions along the mean flow lines, and higher wave-number 
motions similar in structure to those in gravity waves. Figures 4 and 5 and 
equations (1.1) and (8.9) show that both modes give greater contributions to 
the cross-stream than to the down-stream motions. 

This paper describes work done for the Defence Research Board of 
Canada. 
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